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PREFACE

The tests described in this report were carried out by the
Communications Branch of the Transportation Systems Center for the
Federal Aviation Administration. The ultimate objective of this
work is to develop operational sensors -as components of a wake
vortex avoidance system for terminal areas. These particular tests
were designed to establish the basic operating characteristics of a
pulsed acoustic sensor and an array of wind pressure sensors.

The experimental work described in this and earlier reports
has depended heavily upon the technical support of Mr. Myles P. Byrne.
Much of the data analysis was carried out by Mr. John Winkler.

The enthusiastic cooperation of the Massachusetts Port Authority,
The Port of New York Authority, and the FAA personnel at Logan and
Kennedy International Airports is very much appreciated and has
been essential to the success of the sensor tests.

We wish to thank W. P. Maiersperger for suggesting the use
of Ball Engineering pressure Sensors.
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1.0 INTRODUCTION

This report describes the further development and testing of
TSC wake vortex sensing systems during the period from September
1971 to March 1972. Two systems, a pulsed acoustic radar (acdar)
and an array of ground level pressure sensors, have been studied.
An earlier reportl, described the status of these systems as of
August 1971, At that time the acoustic sensor suffered from a
number of difficulties:

1. The transducers were too sensitive to aircraft noise.

2. Measurements of the reference time delay were impossible
under some conditions,

3. The amount of equipment needed to track both vortices
was excessive.

4. The data analysis was extremely tedious.

This report describes substantial progress in overcoming the
first three difficulties. The fourth awaits the delivery of a
real time data processing system, which is scheduled for August 1972,

In August 1971, the ground-based pressure sensor was established
as a promising component of a vortex tracking system, but only a
single sensor had been used in tests prior to those discussed in
this report. The original pressure sensor provided no means for
identifying which vortex was located over the sensor. This report
describes an improved pressure sensor which does provide vortex
identification.

The sensor development described in this report was carried
out at available test sites at Logan and Kennedy International
Airports (Figures 1 and 2). The Logan site is located 2100 ft
from the threshold of runway 22L, in a small grassy field which
contains the 4R localizer. The available transverse distance is
550 ft between boundary fences which are asymmetrically located
with respect to the runway centerline. Because this distance is
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inadequate for testing the tracking capabilities of the sensors,
arrangements were made to operate the equipment in the vicinity of
the middle marker of runway 31R at Kennedy Airport, where the
available transverse distances are 1000 ft to the northeast and
3000 ft to the southwest. The land is sandy (unsuitable for
vehicle travel) and fairly level (+7 ft). The mobile laboratory
van was parked on the paved pad at the middle marker (Figure 3).
For most data runs, photographs of the type shown in Figure 3 were
taken automatically to establish the altitude and lateral position
of the aircraft as it passed over the sensor baseline.

The sensor tests at Kennedy Airport established the general
operating characteristics of both vortex tracking systems. However,
since there was no independent means of monitoring the vortex
locations, the absolute accuracy of the tracks obtained can not
be determined. A comparison of the tracks obtained with each
system for the same vortex shows only moderately good agreement. In
addition, the interpretation of the vortex signal, and in particular,
its disappearance, is not possible in the absense of some other
means of determining the nature and time of the vortex dissipation.
These questions will be studied in future tests at NAFEC (National
Aviation Facilities Experimental Center) where the vortices are
made visible by smoke and can be tracked photographically.
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2.0 ACOUSTIC SENSING SYSTEM

2.1 SUMMARY OF DEVELOPMENTS IN THE PULSED ACOUSTIC SENSING
TECHNIQUE
The most significant improvements since the last report
(#DOT-TSC-FAA-72-2) are the following:

1. The development of a transmit-receive (T-R) mode of
operation in which one speaker acts as both transmitter
and receiver (Section 2.1.1).

2. An increase in system sensitivity, achieved by reducing
the sidelobes of the transceiver response (Section 2.1.2).

3. The design and development of a high powered pulse
amplifier which can drive each speaker at its rated
power of 60 watts (Section 2.1.3).

4. The development of a scheme for choosing speaker position
and pulse timing so that adequate spatial coverage can be
achieved (Section 2.1.4).

5. The use of more sophisticated data analysis (Section 2.1.5).

6. An increase in the size of the signal propagating along
the ground, achieved by elevating the transceivers eight
to ten ft (Section 2.1.6).

These points will be discussed in greater detail in the following
sections.

2.1.1 Transceiver Mode of Operation

In all previous tests loudspeakers were used as transmitters,
and microphones as receivers. Since the speakers are true trans-
ducers (i.e. can also act as receivers), it was decided to use them
as transceivers, eliminating the need for separate microphones.
Each speaker alternately transmits and receives. Switching is
accomplished by a six-channel diode circuit similar to that used
by the National Oceanic and Atmospheric Administration.? The
switching circuit acts as an electronic gate with the parameters



shown in Figure d4a. During the transmitting interval, ¢, the
speaker is connected to the output of the power amplifier and
acts as a transmitter. The power pulse delivered to the speaker
has the waveshape shown in Figure 4b, where the pulse length, 6,
is much shorter than the pulse period, T:

8% 2-3ms.<< T % 100-500 ms.

During the remainder of the period the transducer is electronically
switched to the input terminals of a low-level preamplifier and be-
comes a receiver. (See the block diagram of Fig. 4c.).

fe— T >

(a)

2 | 2— —

>l
l———l—
R ““ «

Figure 4. Transceiver Timing

> § b

A significant problem arises from the difference in signal
level between these two modes of operation. Whereas the received
signals are typically less than a millivolt, the transmitted
signals are on the order of 100 volts. The speaker response to
this high-powered pulse contains a decaying transient, as shown
in Figure 5. In order that this transient may fall to a low level
before the transducer is switched to the receiver preamplifier, the
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by the National Oceanic and Atmospheric Administration.2 The
switching circuit acts as an electronic gate with the parameters
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shown in Figure 4a. During the transmitting interval, ¢, the
speaker is connected to the output of the power amplifier and
acts as a transmitter. The power pulse delivered to the speaker
has the waveshape shown in Figure 4b, where the pulse length, 6,
is much shorter than the pulse period, T:

8% 2-3ms.<< T % 100-500 ms,

During the remainder of the period the transducer is electronically
switched to the input terminals of a low-level preamplifier and be-
comes a receiver. (See the block diagram of Fig. 4c.).

gate time ¢, of the switching circuit must be much greater than the
pulse duration, 6. In these experiments ¢ was set at 20-30 msec.*®

)

(a)

H’ (b)

Figure 5. Signal Voltage Across Speaker
a) Normal size
b) Greatly magnified

Another type of interference is due to nearby reflections from
the ground. This problem can be controlled by adjusting the antenna
beam shape (e.g., tilting the acoustic dishes up). Both problems
are greatly alleviated by transmitting different frequencies in the
two directions of propagation. Thus, the speaker which is trans-
mitting at frequency fl receives a signal at frequency f2' Electronic
filtering** then eliminates a great deal of the ringing at frequency

f The frequencies chosen were 3KHz and 2ZKHz as shown in Figure 6.

1

*This ringing problem was particularly bothersome in one of the
speakers, in which the amplitude of the transient increased
gradually 'with time. Eventually, this speaker was taken out
of service.

#*%#The electronic filters used to obtain the acoustograms in this
report have the following characteristics:
Recording: 2KHz, 3 pole, high pass.
Playback: 2 or 3KHz, 4 pole, high pass; 2 or 3KHz,
2 pole, Q = 5-8, bandpass.
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Figure 6. Frequency Choice as a Function of Wind

The lower frequency was chosen for propagation against the
crosswind component of the ambient wind since lower atmospheric
attenuation at 2KHz compensates for the added losses due to upwind
propagation. This procedure increases significantly the amplitude
of the received signal for this direction of propagation.

2.1.2 Modification of the Antenna Pattern

The sidelobes of the receiving antenna were greatly reduced by
using horn-type speakers instead of microphones in the parabolic
reflectors. A more complete discussion of the relative merits of
several different speaker horns is given in Appendix A. The com-
bination chosen consists of a University SH horn with an ID-60T
driver mounted in a parabolic reflector (Figure 7). When an air-
craft passes through the sensitive volume of the radar, it creates
enough noise in the receivers to mask any useful information. This
noise may be observed at the beginning of each acoustogram. In
earlier tests, using microphones as receivers, this noise persisted
for 10-15 seconds after the passage of the aircraft due to the
omnidirectionality of the microphone response. The lower sidelobe
response of the new system reduces this waiting time to two or three
seconds, as may be seen in most of the acoustograms in this report.
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2.1.3 Development of High Power Pulse Amplifier

The original acoustic system used two commercial public-
address amplifiers to drive the loudspeakers. These amplifiers
proved to be inadequate for two reasons:

1. Their power rating was insufficient to operate the
speakers at full power (60 W per speaker).

2. They generated considerable noise after the transmitted
pulse was turned off, especially when operated near
maximum power (35 W and 75 W respectively for the two
amplifiers).

These difficulties led to the design of a new pulse amplifier

which has performed satisfactorily. The amplifier operates in a
switching mode rather than as a linear amplifier, in order to
eliminate output noise during the time the speaker is acting as

a receiver. Because the duty cycle is low (about 1%) and the pulse
length is short (2-3 msec), very high peak power (500 W per channel)
can be supplied by capacitor discharge from a compact unit with low
average power requirements.

2.1.4 Choice of Speaker Position and Pulse Timing

When a speaker is used as both transmitter and receiver, it is
important to choose its location carefully. If the available land
permits, it is desirable to deploy the transducers symmetrically
about the runway centerline in order to track the vortices equally
well in both directions. It is also advantageous to space the
sensors evenly so that each received signal can be unambiguously
defined on the output display. Satisfying this requirement also
depends on the available land. Since all the pulses are transmitted
at the same time and each received signal has its own non-interfering
time slot, this procedure can be considered a form of time multi-
plexing. Figure 8 shows a representative acoustogram containing
only signals transmitted directly along the ground, and the cor-
responding positions of the sensors. The signals received from

11



speakers 5 and 6 are at a very low level for two reasons:

1. They are received through the back lobe of the
antenna and therefore have very low gain,

2. They are transmitted at 2KHz and are therefore
attenuated by the filtering (tuned to 3KHz).

For a symmetrical, evenly spaced system, such as that shown
in Figure 8, the following relations hold:

T, = G + %) T, (1a)
_m

T, = 7 T+B, (1b)
. T .

Tm- I-'l- B, (IC)

where T is the period of the pulse signal, m, p, and q are integers
(0 <q <n; 0<p), and

n = number of sensors on one side of the runway, i.e.
total number/2,

t_ = the maximum time delay expected from the vortex
delayed pulse,

B = the time when the first grcund pulse appears on the
acoustogram,

T1 = the spacing between the first receivers encountered
by pulses propagating in either direction (may be
negative).

T2 = the spacing between adjacent speakers transmitting
in the same direction (T2 > 0).

B must be larger than ¢ (Figure 4) since the speaker is not in
the receiver mode during this part of the period.

The position of the first ground pulse depends on the direction
and magnitude of the ambient crosswind. The shift in position from
the zero wind condition is equal to Lwc/cz, where W is the magnitude
of the crosswind, L is the baseline length, c the velocity of sound,

12
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and w. << c. If the crosswind is toward the receiver, then this
shift is toward the dead time ¢. Thus B must be large enough to
keep the position of the ground pulse from moving into the dead
time. In our experiments, B was chosen to be 50 milliseconds,
which allows for crosswinds of approximately 12 knots over a
1000 foot baseline with ¢ = 30 msec.

If B - ¢ is not adequate to insure unobscured ground pulses,
the period T may be decreased slightly in order to delay the ar-
rival time of all the ground pulses. This procedure keeps the
initial ground pulse out of the dead time at the expense of
shortening the maximum time available for observing signals.

The alternative of relocating all the speakers is operationally
impractical.

If a vortex is roughly halfway between the transmitter and
receiver and fairly close to the ground (i.e. h < L/4), then from
Figure 9 the following small angle approximations hold:

Figure 9., Small Angle Approximation Geometry

6 _h
T= —3— (2a)
2
r= B (2b)
1/2
L
h= (3 (2¢)
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(2d)

8
where es is the scattering angle in radians and T is the time delay
of the signal received from the vortex pulse. All distances are
normalized to c, the speed of sound, and are expressed in units of
time. These equations are not all independent but each finds a
useful application.

The operational characteristics of the acoustic sensing system
may be determined from Equations (2a) - (2d). The maximum scattering
angles em (landing configuration) are observed from the vortices
generated by B-727's and are in the range of 1.2 - 1.4 radians.

A sensing system generally would be required to track vortices
from a maximum height hm’ (probably equal to the aircraft height)
down to the minimum height reached in ground effect (theoretically

tb/8, where b is the wing span). These limits hm’ h, and em

2
determine the baseline separations of the system. Once h and 0
n May be calculated from (2a): Tn = emhm/z. The sensor

separation, Lm, required to observe signals from vortices at this

are chosen, Tt

maximum height and scattering angle may be calculated from (2b) and
generally results in a relatively long baseline. As the vortex
descends, the time delays observed with a long baseline can become
very small, and the calculation of the position is then not very
accurate (Appendix B). In fact, the minimum height h2 determines
the maximum baseline Ll which will allow the delayed pulse to be
distinguished from the direct pulse. The minimum usable delay,

Tg» 1S about five msec, which according to Equation (2b) leads to

a value of Ll = 1000 msec (1100') for h2 = 50 msec.

In a typical application (see the Kennedy set-ups in
Section 2.3) L, and Lm are approximately the same. In this
case several other sensors with shorter baselines and, hence,
larger time delays are used to monitor the vortex in the region
close to the ground.

15



2.1.5 Data Analysis

Two time delays with either a common receiver or transmitter
are required to locate the position of a vortex. The multiple
speaker system allows for the possibility of observing several
time delays and making a redundant calculation of the vortex
position. These calculations do not all yield the same results
because of errors in data reduction and other systematic errors
(Appendix B). The best ljocation is calculated using a least
squares iterative technique which minimizes the discrepancy
between measured and calculated time delays. An outline of
this procedure is as follows:

1. An initial position (xo, ho) is calculated using the
two largest time delays (with the requirement of a
common transmitter oT receiver).

2. Using this position the expected time delay, a ., is
calculated for all other combinations of speakers.

3. The sum of the squares of the time delay errors is
given by:

S (o)’ 7

nm

where Tom is the observed time delay using transmitter

n and receiver m.

4. The X, position is indexed by an amount Ax and € is
calculated again. This procedure is continued until
the value of x yielding minimum e is found.

5. The same procedure is then followed for ho’ indexing by
Ah‘

6. Steps 4 and S are alternated, and Ax and Ah are decreased
until the location yielding the minimum value of € is
found to the desired accuracy. This result is the best
estimate of the vortex location.

16



A sample computer printout is shown in Figure 10, where T(n,m) is
the time delay Tom® The values of E = Tom = %nm give an indication
of the accuracy of the time delay measurement. The time delays,
which would be observed if the vortex were actually at the final
calculated position, may be found by adding the corresponding values

of E to T(n,m).

2.1.6 Speaker Elevation

In our early work it was often difficult to observe the ground
pulse on some of the receivers. This difficulty was due to several
factors, viz. slopes in the land, ground-level wind-shear effects,
and relatively low transmitted power. Support stands were designed
and constructed to raise the transceiver 8-10 ft above the ground
to help reduce this problem. A photograph of one of these stands
with the transceiver mounted on it is shown in Figure 11. Appendix
C contains a more detailed discussion of the direct signals observed
in the experiments.

2.2 TESTS AT LOGAN AIRPORT, APPROACH END OF RUNWAY 22L

The controlling factor in deciding the speaker position and
timing for the location at Logan is the available land (Figure 1).
Two transceivers were placed on either side of the runway center-
line, and with the help of Equations (2a)-(2d), the configuration
shown in Figure 12 was chosen (for aircraft altitudes of 100-150
feet). Altec Lansing horns with University and Altec lLansing
driver units were used as transceivers (Figure 13). All speakers
were placed on the ground but one, which was elevated to a height
of about 10 ft by means of the support structure shown in Figure
14. It was impossible to detect direct pulses when this speaker

was at ground level because of the sharp downward slope of the
land.

17



Figure 10.

= 26,26475¢€
TC 4, 4)2 a7
TC 1, 5)=2 26
T¢C 1, 6)= 23
T¢C 2, 4)z 55
TC 2, 5)= 39
TC 2, 6)= 32
T( 3, a)= 0
TC 3, 5)= BO
TC 3, 6= 17
TIME = 5

= 104,11927
TC 1, 4z 45
T¢C 1, 3)= 25
TC 1, 6= 20
TC 2, 4): 51
T¢C 2, 5)= 34
TC 2, 6)s 28
TC 3, 4)= 84
T¢C 3, 5)= 69
TC 3, 6)= 66
TIME = 1D

= 175,6238
TC 1, 4)z 43,5
TC 1, 5)= 22
TC 1, 6)z 17
TC 2, 4= 47
T¢ 2, 3)= 26
T¢C 2, 6)2 21.5
TC 3, 4)z 65,5
TC 3, 53 44
TC 5, 6)s 42
TIME = 15
RS 24€,58425
TC 1, 4)= 51
TC 1, 5)= 20
TC 1, 6)= 14
T¢ 2, 4)= 54
TC 2, 5)= 23
T¢ 2, 6)= 17
TC 3, 4): 68
TC 3, 5)= 34
TC 3, 6)= 30
TIME = 20
Xz 331.295
¢ 1, )= 0
TC 1, 5)= 16,5
TC 1, 6)= 9.5
T¢C 2, )= 0
TC 2, 5)= IS
T¢ 2, 6)2 11
T¢ 3, 4)= 0
T¢ 3, 5)= 24
T¢€ 3,°6)=2 19

3 5-- 36
ii= 146.66726
E=~. 75355467

Ex 2.5333916 . .
£2-3.5036706K=02"¢

£ .20423256
E3-1,5088211
Ez-,10124%47
Es 9%.J61848
Ez 1.3487925

Ez-1.2436358

3 4-=-3 5
Hz 138.74508
Ez-1,757608)
Ez .76243234
£z ,4950575
Ez-, 18198046
E=-.56193999

E: 7.0685183E-02
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3 4-- 35
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€z-1,0046676
E2=-,53752927
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L£z-,29798055
Ez 85668105
Bz 1.52321954
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3 4=- 3 5
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Hz 97.919574
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Ez-,21940541
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E2=-.751€1398

X0z 87.275517
AV £72z 2,5202156

AV E*2=

X0= 257.528
AV E"2=

KO=

179.47255 KOz
1.2946815

HO=
1.0958724

259.67
- 1.4637289

X0z 20,264798 HI: 115.28036
AV E"2:= 2,4252572

133.45133

122.50838

114,96358

HO= 97.713324

Sample Computer Printout for the Calculation of the

Position of one Vortex.

Note:

T=0 implies no scattered signal was observed for
this transceiver combination.
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FENCE (FOR RUNWAY 4R) FENCE
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LANDING
AIRCRAFT

Figure 12. Speaker Locations at Logan Airport, Runway 22L.
rm=87 .Sms.; B=30ms. 1=265ms ; T =117.5ms.; n=2;
q=1; p=0; m=2.

Because the baselines at Logan are necessarily short, the
vortices usually drift out of the sensitive volume fairly quickly
(20-40 seconds). For this reason, the tests at Logan Runway 22ZL were
designed to check out the system before large scale testing at
either Kennedy International Airport or NAFEC.

The advantage of a redundant system may be shown with an
example from the Logan tests. Figure 15 shows the tracks of both
vortices obtained using the least squares data analysis (described
in Section 2.1.5). For most of the data points, a time delayed
signal was observed in all four channels (Tables 1 and 2) For these
data points there are four different combinations of transceivers
which can be used to compute a vortex track. The results of each
combination for the right vortex are shown in Figure 16. It ?
can be seen that the averaging done by the redundancy in the least
squares program produces a more realistic track.

20



Figure 13.

(a)

(b)

Transceivers used for the Tests at Logan Airport,
Runway 22L

a) Altec Lansing 203B Horn; University ID60T Driver
b) Altec Lansing 805B Horn; Altec Lansing 291-16A Driver

21



Figure 14. Altec Lansing Multicellular Horn with Support Stand
Against Fence.
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2.3 TESTS AT J.F. KENNEDY INTERNATIONAL AIRPORT, APPROACH END
OF RUNWAY 31R

2.3.1

Site Description

The site chosen for the sensor baseline at Kennedy Airport is

located near the middle marker building at the approach end of
Runway 31R (Figure 2). This site has the following desirable

characteristics:

1.

The mobile laboratory van can be driven right up to
the building where there is an asphalt platform suitable
for parking.

The aircraft are ordinarily 200' high when they pass
over this spot.

The available land imposes few restrictions on the
positioning of the sensors.

Supplementary power is available from the middle marker
building. (It is desirable to run the tape recorders on
external power because the frequency fluctuations of the
generator in the van produce variations in the tape speed
which are severe enough to degrade the data).

The runway is used frequently during the winter months.

The area is totally void of large obstacles which would
perturb the natural behavior of the vortices.

The maximum height of an aircraft as it passed through the

sensitive volume of the acoustic sensor was expected to be about

240' (the maximum height of the glide slope window at the middle

marker).

In this region the small angle approximations, Equations

(2a)-(2d), can be used to obtain an expected maximum time delay:

m

T_ = 110 msec (assuming a maximum écattering angle of one radian).

The shortest baseline with which it is possible to obtain a signal

from a vortex in this region may then be calculated: L _= 970°'
(880 msec).

m
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The tests at Kennedy Airport were divided into two series:

Series 1. Those designed to track the vortices over
very long lateral distances (2900 ft to the port
side of the runway centerline, 1050 ft to the star-
board side). (Section 2.3.2)

Series 2. Those designed to provide reliable vortex
positions in the area relatively close to the
runway centerline (+ 700 ft). (Section 2.3.3)

2.3.2 First Series of Tests: Long Range Tracking

The original test plan for instrumenting runway 31R is shown
in Figure 17 (Set 1: TCVR 1, 2, 4, 5 or 6; Set 2: RCVR 1, 2,
TMTR 1). The central baseline length of 970 msec (m=S5 in
Equation(lb) was chosen to satisfy the minimum distance requirement
i.e., 880 msec. While remaining within the restriction of six
channels for recording acoustic data, it was hoped that both
vortices could be tracked near the runway centerline (using Set 1)
and the port vortex out to 2500 ft., the current specification on
parallel runway separation (using Set 2). It became obvious during
the course of the experiments that this plan was overly ambitious,
and Set 2 was never set up. The transceivers in Set 1 used on
particular days are listed in Table 3. Note that the center
microphone, originally used to position the speakers by acoustic
time delay, was also used as a receiver during the data runs.
TCVR #3 was added during the last day of operation with this
system in an attempt to improve the vortex tracks near the run-
way centerline.

One difficulty that arises while trying to track vortices
relatively near the ground with these long baselines is the
rapid decrease in time delay as the vortex descends (Equation (2c)).
As the vortex approaches its equilibrium height (30-70 ft), the
time delays become excessively small (2-9 msec for the 1060 ft
(970 msec) baseline) making accurate tracking very difficult, if
not impossible.
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TABLE 3. TRANSCEIVER USAGE DURING INITIAL TESTS AT KENNEDY

AIRPORT
NUMBER
OF
CENTER RUNNING ATRCRAFT
DATE TCVRAL1|TCVRH 2 |MIC. TCYRH#3|TCVRA4|TCVR#S [TCVRAG| TIME OBSERVED
11/30/71 v v v 4 4 14:55-16:21 32
12/1/71 v v v v v/ 9:44-20:48 127
12/1/71 / 4 v/ v v 12:34-17:43 106
1/3/72 Y v/ " v/ / 12:22-15:26 31
1/3/72 Y 4 % ' 4 v 15:37-16:22 25

The initial tests were thus not very successful, since the
vortices drifted downward fairly quickly to their equilibrium level
relatively close to the ground. Also, the winds were fairly high
(15-25KTS) during these tests (and probably very turbulent since
we tested mostly during the late morning and afternoon), and the
1ifetimes of the vortices were fairly short. Some of the best
acoustograms obtained with this arrangement are shown in Figure 18.
Because of the poor quality of the data, no vortex tracks were
computed.

With sufficient equipment the Kennedy 31R site would be very
useful for long range tracking, if it were practical to keep
personnel there to collect data during optimum wind conditions.
Unfortunately, during normal operations, runway 31R is used mostly
under conditions of brisk NW winds. More efficient use of testing
time can be made at NAFEC where the flight times of the aircraft
can be controlled (e.g., performing tests in the early morning
hours, 5:00-8:00 A.M. when winds and turbulence are usually lowest).

29



»




B L TR T T TR

Run #35-5 Rug f;gg-lg
B-727 -

® o bbbl oh
4 “o‘v"m il ':“.&“:.ﬂ.“ R R TR R TT T I

G el W e

Run #38-54 Run #39-29
B-727 B-727



-'--M: . ; T T R A

n

) | LY H
e Al T D T L Ml et AN

TG R n T CE T TL R TR T BBTO TR TG LT RO TR TR

Run #37-19 ' Run #38-34
B-727 B-747

B il ks
VIR .'u?'l-l;w"u'.‘lm R LT P

Run #39-29 Run #39-44
B-727 B-727

Figure 18. Sample Acoustogranm
from the Initial
Tests at Kennedy
Airport

31/32



2.3.3 Second Series of Tests: Short Range Tracking

On January 5, 1972, the transceiver positions were changed to
those indicated in Figure 19. The objective was to track the
vortices as well as possible in the volume relatively near the
runway centerline, This is an important region since a vortex
which lingers there may present a hazard to following aircraft.
Also, we hoped to obtain reliable tracks for the vortices as they
passed over the pressure sensors so that it would be possible to
compare the vortex locations indicated by each type of sensor. A
good deal of redundancy in the acoustic data was obtained by plac-
ing three transceivers on either side of the runway. A photograph
of the system, taken with a telephoto lens, is shown in Figure 20.

It was noticed during the first series of tests at Kennedy
Airport that the altitudes of aircraft passing over the baseline
were usually lower than expected. To compensate, the maximum
expected time delay was reduced to T = 100 msec. Also, since
the amount of speaker ringing had been reduced, the value of B
could be decreased to S0 msec. The integers q, p, and m (Eq. 1)
were chosen as 2, 0, and 2 respectively so that a reasonable
volume could be monitored.

Figure 19 shows the positions of ten transceivers. Only
six of these were used in actual operation (limited by the number
of channels on the tape recorder). The choice of speakers de-
pended on the velocity of the crosswind. The three set-ups that
were used are shown in Figure 21, where dotted lines indicate the
general motion of the vortices. A listing of the speakers used
during these tests is given in Table 4.

Vortex tracks obtained with this system are shown in Figures
22a and 23a. The sharp discontinuities in these tracks can be
attributed to certain systematic errors, an example of which would
be the interference of one vortex on the path of the signal from
the other, as shown in Figure 24.
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PORT STARBOARD

VORTEX VORTEX
e <A
e \\>
TCVR#| TCVR #2 TCVR#3 TCVR#4

Figure 24. Example of Vortex Interference. The starboard vortex
1nf1uences the signal from the port vortex to trans-
ceiver #4 much more than to transceiver #3.

As can be seen from the observed time delayed signals of Tables 5,
6,7, and 8, these discontinuities occur whenever the time delays
from a different set of speakers are added to the position cal-
culations. These systematic errors are reduced somewhat by using
the average of three consecutive data points as shown in Figures
22b and 23b.

A judicious choice of speakers can also help to reduce this
systematic error. Suppose the vortices are positioned as shown in
Figure 24, and the time delayed pulses transmitted by TCVRS #1 and
2 are both observed in TCVRS #3 and 4. There is then the possibility
of four independent calculations of the position of the port vortex.

[

[

Since the starboard vortex can interfere with the time delayed
signals received in TCVR #4, the position of the port vortex may

best be calculated using TCVRS #1 and 2 as transmitters and TCVR

#3 as a receiver. While the starboard vortex does not interfere with
these signals, the redundancy of the system is lost. On the other
hand, the first order interference effects caused by the other

vortex are well understood in theory and could be included in a

more comprehensive data analysis program.

A variety of aircraft types was observed during these tests.
The numbers of each are listed in Table 9. It should be noted
that the pulsed acoustic radar has significantly different sensitivity
to vortices generated by different aircraft (see Report No. DOT-
TSC-FAA-72-2, p.9). Since the sensor depends upon the deflection
of an acoustic ray by the vortex core, it is semnsitive to the type s
of core. In fact, the maximum scattering angle 6, can be shown
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TABLE 5.

RUN #46-41 UPWIND VORTEX

Observed Time-Delayed Signals (in msec)

Elapsed
Time (sec.) | 3,6% 2,6 11,6 3,5 2,5 1,5 3,4 2,4 1,4
0
3 64 49 43.5
5 59 41 36
7.5 48 31.3] 27
10 41.51 24 20
12.5 34 17 14.5
15 32 14.5] 11
18 33 10.3 5 _
20 9 4 20.5117.3
25 7.3 14 9
30 6.5 11.5 7.5
_32 7 11.5 6.8
36 21 15 10
40 15 10 9
11 13.3 8 8.5
45 10.8 8
48 9.3 8
*The notation m,n implies a time delayed signal received in speaker
#m which was transmitted by speaker #n.
TABLE 6. RUN #46-41 DOWNWIND VORTEX
Observed Time-Delayed Signals (in msec)
Elapsed
Time (sec.) | 6,3] 6,2 6,1 5,3 5,2 5,1 4,3 | 4,2 4,1
5 35.51] 29 60
7.5 28 21 44 36
10 22.5116 32 24
12.5 18 10.5 22.5117.5
15 39 16 8 20 12
20 42 30 33 13.5 15.5 6
_25 38 18 36.5] 18 19.5
27 410 17 21 22
28 412 16 26
30 14 33 2.5
35 15 ! 8
37 16.5 10
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TABLE 7. RUN #46-46 UPWIND VORTEX
Observed Time-Delayed Signals (in msec)

Elapsed
Time (sec.) | 3,6 | 2,6 1,6 3,5 2,5 1,5 3,4 2,4 1,4
3 56 45 41
5 46.5 1 35 32
7.5 35.5 | 26 23.5
10 29 20 18.8
12.5 23.3115 14
15 20 13 11 43
20 16.5 9.5 7.5]132
22 15 9 7 27 18 16
25 11.5 18
28 9.5 16.5
30 9 16,5
35 9.5 16
40 14 19
45 16.5 22
48 26 11
TABLE 8. RUN #46-46 DOWNWIND VORTEX
Observed Time-Delayed Signals (in msec)
Elapsed
Time (sec.) | 6,3 6,2 }6,1 5,3 5,2 5,1 4,3 | 4,2 4,1
3 53 42 38
S 43.5 | 32 29
6 32.5 |23 20.5
7.5 26 17 15.8
8.5 20,3 112 11
10 17 10 8 40
12.5 13.5 6.5 4.5 |29
15 12 6 [ 24 15 13
20 11.5 5 4 18 11 10
_27.5 12 9.5 16.51 9.5 8
30 9 16.5 9 7
_32.5
35 9.5 3.5 16 9.8 8.3
38
40 14 4.5 19 10 8.3
45 16.5 S 22 10.5 8.3
47.5 6.5 26 11
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to be proportional to the maximum circulation divided by the core
radius. According to the observed scattering angles, we can define

two types of vortices:

1. The "tight core" vortex where very high velocities are
found in a relatively small core. Our system is very
sensitive to this type.

2. The "soft core" vortex where the velocities are more
spread out in a larger core. Our system is less
sensitive to this type.

A subjective analysis of a large number of acoustograms leads to
the conclusion that the former type of vortex is produced by threce
types of aircraft in landing configuration:

1. "clean wing" types with no wing mounted engines
(viz. B-727, DC-9, BAC-111, VC-10, etc.).

2. Aircraft with wing mounted engines located relatively
near the fuselage. e.g., B-737, DC-10.

3. Propeller driven aircraft (e.g., DC-7, Electra, C-130,
P3V).

Aircraft which appear to produce the '"soft core" vortex are the
"dirty wing" variety (i.e., at least one engine mounted relatively
far out on the wing, e.g., B-707, DC-8). Although the B-747 has
wing-mounted engines, the maximum scattering angles observed from
its vortices are only slightly smaller than those from "tight core"
vortices. It should also be pointed out that the data indicate
that the maximum observed scattering angles are larger for the

DC-8 than for the B-707.

To illustrate the sensitivity of the acoustic sensor system to
the vortices from these various aircraft, sample acoustograms
obtained from tests on three different days are presented in
Figures 25 to 39. Most figures represent an arbitrary choice of
nine runs for the day and for the type of aircraft indicated.

For comparison purposes transceiver #4 or #5 was used to monitor
the downwind vortex in each case. The general wind velocity can
be obtained from the Kennedy Summary (Table 9). The consistency of
the acoustograms obtained for the same type of aircraft should be noted.
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3.0 PRESSURE SENSOR SYSTEM

The basic use for a pressure sensor array is to track wake
vortices which have descended into ground effect. Such tracking
may be necessary at airports with parallel or intersecting runways.
The tests reported here were designed to determine the feasibility
of tracking vortices by this method and to try to obtain some data
on the distance a vortex can drift in ground effect before dis-
sipating.

The pressure sensor tests were conducted almost exclusively
at Kennedy Airport. Six differential sensors of the type shown
in Figure 40 (Ball Engineering Model 100D) were deployed along the
baseline (Figure 2) on posts five feet high. Nine posts were set

Figure 40. Ball Engineering Differential Pressure Sensor
(3" Diameter)
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out at the locations listed in Table 10. The sensors were placed
on six of these posts, selected according to the ambient wind con-
ditions. For most tests the six pressure sensor signals were re-
corded on six fm channels (0-312 Hz bandwidth at 1.75 i.p.s.) of
a seven channel instrumentation tape recorder. The seventh was
used to record commerts and aircraft arrival time markers similar
to those recorded on the acoustic radar tapes. In addition, two
of the six sensor signals were recorded on a two-channel strip
chart recorder for immediate observation. The pressure data
tapes were subsequently played back and displayed on a multi-
channel (up to eight) strip chart recorder. (See Figure 47 for

a sample record.)

TABLE 10. PRESSURE SENSOR POST LOCATIONS

Identification Position
Number (ft)
P7 840
P8 635
P9 420
P10 215
P11 0
P12 -220
P13 -430
P14 -635
P15 -890

3.1 HISTORICAL DEVELOPMENT

The single differential pressure sensor used in the July 1971
tests at NAFEC was a precision laboratory instrument which required
complex electronics.3 An array of pressure sensors should con-
sist of inexpensive sensors with self-contained electronics, whose
accuracy need not be better than *10%. For this purpose Ball
Engineering Variometers, used commercially as rate of climb in-
dicators in gliders, have proved to be generally reliable. Some
problems with zero stability have been experienced, and operation
under cold, wet conditions without careful waterproofing was found
to be unreliable.
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The sensitivity required for a pressure sensor depends upon :
the speed of the winds being sensed. The two are related by
Bernoulli's principle,4

ap = 3o vE,

where Ap is the pressure change, p is the air density and v is the
wind speed. One can show that the ground wind produced by a vortex
which has descended into ground effect is four times the free de-
scent rate of the vortex pair (about 8 ft/sec for a B-747). Thus,
the maximum velocity to be measured is at least 32 ft/sec, which
corresponds to a pressure of 0.25 inches of water (at sea level,
0°C). 1Inadvertently, the first Ball Engineering sensors were
ordered with a full scale sensitivity of + .05 inches of water.
Consequently, until the sensitivity could be reduced, external
means were used to reduce the pressure applied to the sensor.

The technique adopted in the July 1971 tests was to block one
orifice of the pressure sensor and measure the wind induced pressure
with the other, which pointed generally in the vertical direction.

[

Changes in atmospheric pressure required occasional unstopping of
the blocked orifice to keep the sensor on scale. Sample data

%3

obtained with this scheme are shown in Figure 41. The need for
pressure equalization was eliminated with the arrangement shown
in Figure 42. The pressure in the reference port P responds to
slow barometric pressure changes but not to rapid vortex induced
pressure changes because of the time constant RZCZ’ The sensor
therefore detects only the desired rapid changes in pressure at
port S. The purpose of the additional capillary R1 is to reduce
the sensitivity of the sensor. Unfortunately, the response speed
is also reduced because of the volume C1 and the change in volume
produced by diaphram motion in the sensor. The time constant
(R1+R2)C2 was about 40 sec and the ratio R1/R2 about eight.

Figure 43 shows some data taken with this arrangement. The
movement of vortices across the array is evident. In some cases
both vortices are detected by the second sensor P13 and are re- >
corded as a double peak. The identification of which vortex ap-
pears in the first sensor P12 is uncertain for this sensor
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»FIRST VORTEX

‘SECOND VORTEX

ELAPSED TIME —» (minutes)

Figure 41. Pressure Data Run 12, 7/31/71, B-747. The Aircraft
Arrived at Time Zero

-« 2" 25 GAUGE NEEDLE

R/

S P
PRESSURE
SENSOR

172" 23 GAUGE NEEDLE

125ml
FLASK

Figure 42. Pressure Sensor with Auxiliary Apparatus to Reduce

Sensitivity and Eliminate Response to Barometric
Changes.
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,FIRST VORTEX

’SECOND VORTEX

L i ] L :

-1 (o] | 2 3
ELAPSED TIME — (minutes)

Figure 41. Pre§sure Data Run 12, 7/31/71, B-747. The Aircraft
Arrived at Time Zero

< 2" 25 GAUGE NEEDLE

RI
/1/2" 23 GAUGE NEEDLE
R
C 2 C.
S P
PRESSURE o
SENSOR

Figure 42. Pressure Sensor with Auxiliary Apparatus to Reduce

Sensitivity and Eliminate Response to Barometric
Changes.
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mainly upon wind speed. The sensor thus shows the desired
sensitivity to transverse winds and relatively much less sen-
sitivity to the longitudinal ambient wind.

The first experimental arrangement using 120° dual Pitot
tubes is shown in Figure 47, The capillaries reduce the sensor
sensitivity as before and also serve to limit the speed of re-
sponse. Data taken with this arrangement are shown in Figure 48.
The two vortices produce signals of opposite sign as they pass over
a pressure sensor (see sensor P-9 particularly), tracing a character-
istic "S" shaped curve. The down wind vortex (upward signal) can
be tracked all the way across the 800 ft array in some cases. The
arrangement shown in Figure 47 (with Cl# CZ) results in the
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TWO

OP

TYPICAL O Ebs cor

gﬁNGE DIFFERENTIAL
WIND —= PRESSURE
DIRECTIONS 60° SENSOR

RUNWAY <
AIRCRAFT PATH

Figure 45. 120° Dual Pitot Tube Pressure Head Arrangement.
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Figure 46. 120° Dual Pitot Tube Installed at Kennedy 31R Middle
Marker. (The Tubes are Made of 1/4" Copper Tubing.)
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It

G Ra C2

—

S P

PRESSURE
SENSOR

Figure 47. Pressure Sensor with 120° Dual Pitot Tubes and Reduced
Sensitivity. R, and R, are 2'" long 23 gauge needles.
R, is a 1/2" loﬁg 23 gguge needle

detection of the ambient pressure change associated with aircraft
passage overhead. This effect produces narrow pips in the center-
line sensor P11, especially for B-747 runs.

The final week of pressure sensor testing was conducted with
sensor sensitivity reduced to a full scale value of + 0.5 inches of
water. The original value of + 0.05 inches of water was reduced
by installing a thicker diaphram (.001" replacing .00025") and
changing the position of the inductors which sense the diaphram
location. A full scale pressure of 0.5 inches of water is suf-
ficient to measure a 32 ft/sec cross wind with a dual Pitot tube
sensor since the two tubes experience comparable but opposite
pressure changes of 0.25 inches of water or less (Figure 44)., The
reduction of the intrinsic sensitivity of the sensor makes it pos-
sible to retain the full speed of response of the sensor, which was
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limited to a 0.1 sec time constant by electronic filtering. Some
pressure data recorded with this full bandwidth are shown in Figure
49, Figures 50 and 51 show the effects of smoothing the data with
0.5 and 1.5 second time constants. All further pressure data
presented in this report were recorded with a 0.5 second time

constant.

A basic requirement for the analysis of pressure data is a
convenient, compact means of simultaneously displaying the out-
puts of many pressure sensors. This requirement has been met by
a Brush Model 816 Recorder which uses a single pen to display up
to eight multiplexed channels at a maximum total sampling rate of
16 per second. The type of record produced by this recorder is
shown in Figure 52 which includes the two runs shown in Figure 50.
The discontinuous nature of the recording is evident at points
where the signal is changing rapidly.

3.2 TYPICAL RESULTS

Experimental pressure data taken under a variety of conditions
are shown in Figures 53 to 61 and are presented in chronological
order. When available, the data include the wind measured by an
anemometer on the van at 13 ft altitude, "Measured Wind", measured
at 12 ft altitude, 7000 ft from the van. The wind direction is
given with respect to magnetic north. Data were taken whenever
runway 31R (i.e., 310° magnetic heading) was being used for landings.,
When the wind direction is less than 310°, the vortices tend to
drift to the left (Figure 2), i.e., toward the higher number pres-
sure sensors, P11l being at the centerline (Table 10). When the
wind direction is greater than 310°, the vortices tend to drift

in the opposite direction, i.e. toward lower numbered pressure
Sensors.

3.3 DISCUSSION OF RESULTS

The discussion here is based on the pressure data of Section
3.2 and is therefore qualitative since the altitude and arrival
time of the vortices at each sensor cannot be determined from the
pressure data alone. All quantitative discussions will be deferred
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Pressure Data Taken on 2/10/72, 2052-2102 Local Time.

The data from six pressure sensors is plotted at a rate

of 16 samples per seccnd (i.e.,
nel per second).
second time constant.
mph after the first two runs.

2-2/3 samples per chan-
The signals are filtered with a 0.5

The measured wind (13 ft) was 7

The Kennedy Tower reported

winds in the range 5-8Kts at 310°-350°,
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to Section 4.0 where the pressure sensor data will be compared to
vortex tracks determined by the acoustic radar.

The ambient wind strongly affects both the vortex signals and
the noise in the observed pressure data. The noise level depends
upon atmospheric turbulence, which generally increases with wind
intensity (compare Figures 53 and 60, for example). A vortex can
be detected only when the wind produced by the vortex at the sen-
sor is larger than the fluctuations in the ambient wind. Under
some conditions (Figure 53), the noise levels are so high that only
vortices from the B-747 can be identified. On the other hand, when
the ambient winds are very low (Figures 52,60,61,62) the observed
noise is due to the intrinsic turbulence of the vortex in ground
effect.

Under specific wind conditions the best vortex signals
generally appear at a particular pressure sensor. This effect
results from the two requirements for vortex detection by a ground
based sensor:

a. The vortex must be low enough to produce an observable
wind at the ground, and

b. The vortex must not have dissipated before it reaches the
sensor.

The first appearance of the vortex signal can be estimated by the
following simple calculation. The altitude of the aircraft at

the 31R middle marker is usually 175-200 ft. At a typical descent
rate of 7 ft/sec a vortex takes 20 sec to drop to 60 ft from 200 ft.
If the transverse wind component is 15 ft/sec (as in Figure 53),
the vortex will have travelled 300 ft horizontally in that time.
This is consistent with the fact that the '"400 ft" sensors (P9 and
P13) produced the best vortex signals in the presence of a strong
cross wind (see Figures 53,56,57,60, 61). As a vortex begins to
dissipate, the pressure signals deteriorate. This effect can be
seen in the P8 and P7 signals of Figure 59. The absence of identi-
fiable vortex signals in P15 (Figures 56 and 57) may not be due to
dissipation alone since the region between sensors P14 and P15
contains a large patch of tall marsh reeds (8 feet high) which
undoubtedly affected the wind near the ground.
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The horizontal motion of a wake vortex in ground effect is not
solely a function of the ambient cross wind but is also influenced
by interaction with the ground. This effect increases the speed
of the down-wind vortex and decreases the speed of the up-wind
vortex. The vortex separation increases with time as can be seen
clearly in Runs 46-41 and 46-43 in Figure 57, and Run 47-35 in
Figure 59. If the cross wind is small enough, the vortices should
propagate in opposite directions. This situation occurred for only
a very small fraction of the total number of runs. Data from two
such occasions are shown in Figures 52 (the first three runs) and
55. In the first case the ambient wind was low and in the second
the wind was high but blowing directly down the runway. In
neither case did the vortices last long enough for the signals to
appear in more than one pressure sensor.

The data shown in Figure 52 deserve further comment, Run 47-5
was the first aircraft to land on runway 31R after a runway change.
Before the aircraft arrived, the wind was very calm. The wind and
turbulence increased significantly after the first two aircraft
passed. Figure 52 shows the propagation of increased turbulence
along the sensor baseline. It is not clear whether the aircraft or
a coincidental increase in ambient wind is responsible for this
turbulence.

The shape of the vortex signals observed by the pressure
sensors is quite variable. Often the signals are slowly rising
symmetrical peaks as one might expect. Sometimes however, the
first vortex signal has a sharp leading edge and a long trailing
edge (e.g., Run 47-8, P10 in Figure 52 and Run 46-43, P14 in
Figure 57). Often the second (up-wind) vortex signal is followed
by a signal of the same polarity as the first vortex (e.g., Runs
46-41, 43, P13 in Figure 57). The shape and magnitude of the
vortex signal results from the detailed interaction of the vortex
with the boundary layer of the atmosphere at the earth's surface.
We have not had the resources to investigate the theory of this
interaction except to construct a model calculation of the effect
of wind shear on vortex trajectories.5
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4,0 COMPARISON OF VORTEX POSITIONS OBTAINED FROM ACOUSTIC AND
PRESSURE DATA

The nature of the information obtained from the two sensing
systems is quite different. The acoustic system determines the
position coordinates, x(t) and h(t) of the vortex core as a
function of time. One would expect that the maximum pressure
signal would occur at the time th when the vortex core is directly
above the sensor. In this case the horizontal vortex location
is xi(tm), and one point is obtained for each sensor which detects
the vortex. The relevant comparison in this section is therefore
between x(t) and xi(tm).

Knowing the aircraft parameters and the height h(t=tm), one
can also predict the magnitude of the pressure signal, or conversely
use this magnitude to determine a height hi(tm). Such comparisons
give rough agreement but are probably of limited value for the
present data. Quantative evaluation of the pressure data is in-
trinsically limited by the nonlinear nature of sensor response to
transverse velocities. For transverse wind velocities much smaller
than the longitudinal velocity the response is linear. For trans-
verse velocities larger than the longitudinal velocity the response
is quadratic. Since the transition between the two responses de-
pends upon the ambient wind, a universal response curve cannot be
constructed. A detailed quantative analysis of the data also re-
quires a knowledge of the zero response level, which is difficult
to determine because of zero offsets in the pressure sensor, the
signal amplifier and the tape recorder. We conclude that it is
more reasonable to regard the pressure sensor data from the point
of view of vortex detection rather than vortex measurement.

Figures 62-69 compare the vortex positions x(t) calculated
from the acoustic data with the positions xi(tm) obtained from
the pressure data. Only a few comparison tests are presented since
it is presently a very laborious and tedious task to recduce the
acoustic data to obtain these vortex tracks. This protlem will be
resolved by the use of a migé-computer for the data analysis.
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The transceiver positions for these runs are shown in Figure
70. Enough information was obtained from the time delayed signals
using only transceivers #4, 10, 6, 7 and 8 to calculate the vortex
track for Figures 64-69. The signals in transceiver #3 were there-
fore not included in the calculation. The resultant tracks are
relatively free of the types of discontinuities which occur in
Figures 62-63 for Runs #46-41 and 46-46 where all observed signals
were included. The absence of these discontinuities is probably
due to the fact that the delayed signals used were relatively free
of the systematic errors introduced by the interference of the star-
board vortex (See Section 2.3.3).

In Figures 62-69 the discrepancies in vortex location given
by the two types of sensors are probably due mostly to errors in
the acoustic location x(t). Good pressure data is obtained only
for vortices relatively close to the ground, where the largest
errors occur in the acoustic system (Appendix B). The maximum
disagreement in the lateral positions determined by these two sen-
sors never exceeded one hundred feet. The position of the vortex
indicated by the pressure sensors also contains a small error
which is entirely a timing error since the positions of the
pressure sensors are accurately known. The magnitude of this
error depends upon the noise level and upon possible systematic
errors in the assumption that the maximum signal occurs when
the vortex core is overhead. The timing errors in the pressure
data analysis are probably on the order of a few seconds.

The absolute accuracy of the vortex positions measured by
these two systems may be determined by comparing them to the
positions obtained by photographic tracking with the NAFEC smoke
tower. A series of such tests, using pressure sensors, was con-
ducted at NAFEC during the period April 17 - May 5. At the time
of this writing this data is being reduced and will be published
in a subsequent report. Future tests with the NAFEC smoke tower
are being scheduled for the summer and fall of 1972 to calibrate
both systems (with priority on the acoustic system) and to resolve
some of the systematic problems previously discussed.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

With respect to the acoustic sensor the tests have shown that
the best tracking accuracy is achieved with a redundant systen.
In order for such a system to retain the advantages of simplicity
and maintainability in the field, transmission and reception should
be accomplished by transceivers. For better S/N these should
operate at different frequencies for each of the two functions.
As expected, improved ground reference pulses are obtained if
the transceivers are elevated above ground level.

Operational problems were encountered by the acoustic sensor
due to the interference of one vortex with the signal from the
other., This difficulty can probably be overcome by proper data
handling procedures. The wind pressure sensors were able to distin-
guish clearly between the two vortices, (but are not suitable for
tracking at altitudes much above 100 feet). Furthermore, wind noise
degrades their S/N ratio severely above about 15 knots.

It is recommended that further tests of these sensor systems
be oriented toward realtime data processing and the absolute
calibration of tracking accuracy. This work should be done
at NAFEC where facilities exist for photographically tracking
vortices marked with smoke.
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APPENDIX A
ACOUSTIC ANTENNA DESIGN

In this appendix, the properties of various antenna-transducer
combinations are compared. It is assumed that the major sources
of noise, such as a landing aircraft, are on a line perpendicular
to the radar baseline. Table A-1 shows the relative efficiency of
the combinations used in various tests. The advantage of a horn-
in-dish receiver is large and accounts for the very short streaks
of aircraft noise in the Kennedy acoustograms. Table A-2 lists
the angular response and other properties of the horns and dishes.
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TABLE A-1. SYSTEM EFFICIENCY CALCULATION

Transmitter Efficiency
= 2
Horn I = P/elezL
Horn in Dish I = GP/6,6,L2

Receiver Efficiency: Ratio of Front to Side Response

Omnidirectional Microphone 1

Omnidirectional Microphone in Dish

Horn R

Horn in Dish GR

Relative Total Efficiency: Product of Transmitter Efficiency and
Receiver Efficiencies (assume same 8, for all cases)

Configuration Efficiency Efficiency at 3KHz

Horn in Dish-Omnidirectional 2
Microphone in Dish (used G 500
in previous work)

Horn - Horn (used in Logan
Tests) R/92 40
Horn in Dish - Horn in Dish RGZ 200,000

(used in Kennedy Tests)

oy

Definitions

G = esD/A is the gain of the dish (assume 92=63 for a horn in a dish)
8, = Verticle angle of Horn Beam

62 = Horizontal angle of Horn Beam

8. = Angle subtended by a dish at its focal point.

I = Acoustic intensity at reciever

P = Acoustic power transmitted

L = Transmitter - Receiver spacing



TABLE A-2. PROPERTIES OF ANTENNA COMPONENTS

Relative Voltage Response with ID-60TDriver: 3KHz pulse
Angle Altec 203B University University
Multicellular horn SH Horn GH Horn
0° 380 mV 380 mV 250 mV
90° 32 20 7
180° 38 60 20
270° 38 15 7
R ~100 400 1200
Horn Physical Characteristics:
Altec 203B University University
Multicellular horn SH Horn GH Horn
Mouth 32" (Vertical) X 17" 9" diam 31" diam
Dimensions * '
Nominal
Angular 20° (Vertical) X 40° 100° 65°
Divergence

Dish Physical Characteristics:

Width (D)
Height
Focal Length

93 =

[}

52"
36"
30"
90°
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APPENDIX B
THE INFLUENCE OF TIME DELAY ERRORS ON VORTEX POSITION LOCATION

Errors in the measurement of time delays result in errors in
the calculated vortex positions. Expected time delay errors have
been empirically determined to be about *1 millisecond (Figure 10).
An example of the resulting position errors for a three transducer
system is shown in Figure B-1, where the transducer spacing cor-
responds to that in Figure 19. Figure B-1 illustrates what happens
when one millisecond is subtracted from the time delay observed in
receiver 2. The heavy dots represent the correct position calcula-
tion and the arrows show the new position when the error is added.
Figure B-2 illustrates the effects of adding one millisecond to
the time delay observed in receiver 2. The asterick (*) indicates
that no real position exists for the incorrect data. Some pos-
sible sources of a one msec error are:

1. wuncertainty in the position of the ground pulse,

2. one vortex interfering with the path of the signal
from the other vortex and/or the ground pulse,

3. wind shear effects,

4. inability to read the data output (Polaroid oscilloscope
photographs) to better than one millisecond.

The first three errors are systematic while the last is random.

From a systems point of view it is useful to determine regions
where the expected location error is less than a specified amount.
The loci of constant position error for a millisecond time delay
error are shown in Figure B-3. The loci of constant scattering
angle have been superimposed on these curves. The combination of
these two types of curves could be used to specify systems para-
meters. Once a maximum scattering angle and acceptable position
uncertainty have been defined, the region that would be adequately
monitored lies between the two corresponding curves in Figure B-3.
Similar curves could be drawn for any system configuration.

B-2
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APPENDIX C
ANALYSIS OF DIRECT ACOUSTIC PULSES

This appendix contains the analysis of some direct acoustic
pulses obtained under various experimental conditions at Kennedy
Airport. Comparisons were made between dishes mounted on ten foot
stands (Figure 11) and dishes mounted on the ground. The ten foot
stands were designed to increase the magnitude of the up-wind direct
signal for large separations between dishes. Signals propagating
with the wind used a frequency of 3KHz (Figure C-1) and those
against the wind, 2KHz (Figure C-2). The crosswind speed was
determined by comparing the pulse transit times in the two directions
for pairs of speakers.

The results of the direct pulse analysis are shown in
Figures C-1 and C-2. The peak direct signal is plotted as a
function of speaker separation and crosswind speed. The re-
duction in direct signal as a function of distance L is due to
three effects:

1. The effect of wavefront expansion (the signal
amplitude falls off as L-1).

2. The effect of beam attenuation, which increases
at higher turbulence levels.

3. The effect of beam refraction, principally because
of wind shear. The beam propagating against the wind
is deflected away from the ground and can be lost
completely. The beam propagating with the wind is
also somewhat attenuated by wind shear.

In Figure C-1 the signal propagating with the wind generally de-
creases with distance and increasing crosswind. For propagation
against the wind in Figure C-2 the attenuation is more dramatic.
The actual attenuation is considerably greater than that shown,
since the largest signals exceeded the available dynamic range of

(4]
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the tape recorder and were clipped. In the case of a strong cross-
wind, the signals with one speaker on the ground were smaller as
one would expect.

A simple model of wind shear can be used to understand the
observed effects of propagation against the wind. Generally, the
wind shear y = dv/dy decreases strongly with height. The model
therefore assumes (Figure C-3) a uniform wind shear up to height
h0 and no wind shear from ho to the height h of the speaker where
the crosswind speed is V(Y=V/h0). One can calculate the limiting
separation L, of two speakers at height h for which the acoustic

ray between them just hits the ground. The result is:

L = (h+h) (2¢/v)1/?
where the ray is assumed to make a small angle with the ground.
If one speaker is on the ground, the separation is just half this

value. The separations given in Table C-1 for several cross
wind values are in rough agreement with observation (Figure C-2).

TABLE C-1. SPEAKER SEPARATION AS A FUNCTION OF CROSSWIND

v h h° Lz
1.5 ft/sec 10 ft 10 ft 780 ft
5 ft/sec 10 ft 10 ft 420 £t
20 ft/sec 10 ft 10 ft 210 ft

Propagation through the atmosphere not only atteruates the
peak signal, but also tends to broaden the pulses and to produce
multiple pulses. Figures C-4 - C-6 show some examples of direct
pulses obtained with the same speaker pair under different wind
conditions. These signals are obtained by filtering the raw
acoustic signal, rectifying, and averaging for 15 or 20 seconds
at a time when no aircraft or vortices are present.
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Figure C-1. Peak 3KHz Direct Signal vs Speaker Separation for Three
Values of Crosswind. The solid symbols indicate that
both speakers were elevated to about 10 Ft. The open
symbols indicate that one of the speakers was located
at ground level. The wind direction is positive in
the direction of 3 KHz propagation.
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(volts)

PEAK DIRECT SIGNAL AMPLITUDE

Figure C-2.

o CROSSWIND
a ® -1.5 ft/sec
B 5 ftsec
A 20ft/sec
o g- (3runs)
(m] O @
o o o
[ § ]
o
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A
s A
A
A e
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1 1 “. L
500 1000 1500

SPEAKER SEPARATION (ft)

Peak 2KHz Direct Signal vs Speaker Separation. See

comments on Figure C-1.
Note: All signals above 6 volts have been clipped by

overdriving the magnetic tape recorder.
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Figure C-6.

Direct Signals Be-
tween Speaker Loca-
tions 3 and 7 (Figu:
19); Separation =
1040 Ft. Note the
disappearance of the
3KHz signal into the
speaker ringing for
20 ft/sec winds.

C=9/C-10



REFERENCES

Burnham, D., Hallock, J., Kodis, R. and Sullivan, T., "Vortex
Sensing Tests at NAFEC", Report No. DOT-TSC-FAA-72-Z. See

also, "Aircraft Wake Vortex Sensing Systems', DOT-TSC-FAA-72-13,
which describes earlier work.

Simmons, W.R., Wescott, J.W., and Hall, F.F., Jr., "Acoustic
Echo Sounding as Related to Air Pollution in Urban Environ-
ments', NOAA Technical Report ERL 216-WPL 17, May 1971.

Hallock, J.N., "Pressure Measurements of Wake Vortices Near
the Ground", J. Aircraft 9, 311 (April 1972).

Landau, L.D. and Lifshitz, E.M., Fluid Mechanics (Pergamon
Press, London, 1959), p. 19.

Burnham, David C., "Effect of Ground Wind Shear on Aircraft
Trailing Vortices'", AIAA Journal 10, 1114 (August 1972).

R-1



.









